Development of Voice Commands in Digital Signage for Improved Indoor Navigation Using Google Assistant SDK

DAVID SHEPPARD, NICK FELKER, and DR. JOHN SCHMALZEL

Outline

- Motivating application
- Constraints
- Details of device development
- Results
- Future work

Image source: Kriesten objekt design GmbH on Wikimedia

Indoor Navigation

- Indoor navigation is not easy, especially in a new place
- Traditionally maps are not interactive
- Current digital signs are more dynamic, but often fail to provide custom information or do so in a nonintuitive way
- Many digital signs are large and expensive

Image source: Kriesten objekt design GmbH on Wikimedia

Application Problem

- Develop a Smart Sign as a small, voice-forward digital sign
- Use a microphone and Wi-Fi connection to accept and process verbal requests
- Use voice input and natural language processing allowing users to find information faster than a sign with only a touchscreen
- Potential for incorporating Google Assistant to provide natural user-to-device communication

Constraints

- Ease of use: The Smart Sign must be intuitive to interact with and encourage user interaction
- Ease of development: The Smart Sign software must be easy to modify such that its maps and other information can be easily updated
- Portability: The Smart Sign must be easy to install in an indoor location
- Affordability: The Smart Sign must not be cost-prohibitive

Design Approach

Based on the Android Things Pico Pro Maker kit

Development board designed by Google (180EUR)

- Primary hardware of the device:
 - Pico i.MX7 development board with:
 - Two ARM® Cortex®-A7 cores (up to 1.2 GHz)
 - An ARM® Cortex®-M4 core
 - 5-inch touch display
 - Wi-Fi antenna
 - USB-C power cable

Design Approach

- Software:
 - Android 8.1 operating system
 - UI development familiar to Android users
 - Able to receive Android version updates
 - App written in Java
- 3D printed case to house the Android Thing

The Smart Sign

User Interface

- Simple and intuitive
- An IDLE state provides the user with general information about the time, location, and weather
- From IDLE, the user initiates voice commands by a button press—due to high ambient noise
- Users ask:
 - Questions developed specifically for the Smart Sign
 - "Where is room 337?"
 - Questions already understood by the Google Assistant
 - "What is the current temperature?"

Custom Commands

- Written for the Google Assistant to support the Smart Sign
 - "Where is room ____?"
 - Enable the Smart Sign to respond to users in a much more familiar way, conversational way
 - Custom commands are defined and written in a JSON file that is included in the app
- Approach allows the Smart Sign to be adapted to other similar applications

Writing Custom Commands: A sample from actions.json

```
"trigger": {
    "queryPatterns": [
        "Where is (classroom)? (room)? $SchemaOrg_Number:number",
        "How do you get to (classroom)? (room)? $SchemaOrg_Number:number",
        "(Give me)? directions to (classroom)? (room)? $SchemaOrg_Number:number"
]
}

optional phrases

placeholder for room number
```

Giving Directions

- Directions are drawn over a map of the building
- Directions consist of:
 - Green circle at current location
 - Red circle at destination
 - Polylines representing the optimal route
- The endpoints of each polyline and locations of each circle are represented as coordinate pairs corresponding to the pixels in the image of the floor map.
- Directions are currently preprogrammed for each room
 - This could be eventually implemented into a mapping algorithm so that polyline parameters do not have to be written manually

Navigation View

Mapping Function: Sample from NavigationPath.java

```
coordinates of Smart
                          Sign's fixed location
                                                           room number from
private int SignStartx1 = 559;
                                                                                                          coordinate pair
                                                            verbal user input
private int SignStarty1 = 598;
                                                                                                           (single point)
private void DrawCommand(int RoomNumber) {
     switch (RoomNumber) {
         case 100: // room 100
              Line = new float[]{SignStartx1,SignStarty1,559,574,559,574,580,574,580,574,580,640,580,640,650,640};
              Endx1 = 650;
              Endy1 = 640;
             break;
          case 101:
                                                                              2<sup>nd</sup> polyline...
                            1<sup>st</sup> polyline = X<sub>start</sub>, Y<sub>start</sub>, X<sub>end</sub>, Y<sub>end</sub>
          // ... etc.
```

α Testing

- The Smart Sign α test
 - One week duration
 - Engineering building (Engineering Hall, Rowan Univ.)
 - >200 queries processed
- Testing results
 - Analyzed using associated "My Activity" webpage
 - Provided insights into features that should be added to the Smart Sign

Query Categories

Internal Testing Findings

- The Smart Sign effective for path guidance
- Users liked the Smart Sign's ability to receive quick and succinct directions
- Integration with Google Assistant allowed users to ask questions they are accustomed to using with other digital assistants
- The Smart Sign had trouble understanding some requests
 - Attributed to poor quality microphone
- Support for non-numerical room names needed to be added
 - (This was completed after testing)

Future Work

- 1. Expand the library of custom commands
 - Increase repertoire of requests the Smart Sign understands
 - Added recognition of non-numerical room names (e.g. "office")
- 2. Implement server-side integration of the code
 - Allows the application to be modified remotely, further expanding the ease of development
- 3. Add features to the IDLE state
 - Announcements/Calendar events
 - Use suggestions for the Smart Sign.
 - Incorporation of advertisements

Future Work

- 4. Extend the concept to instrument/process control
- Natural voice command set
 - Audible SCPI—e.g., MEAS:VOLT:DC

References

- R. Want and B. N. Schilit, "Interactive Digital Signage," in Computer, vol. 45, no. 5, pp. 21-24,
 May 2012.
- "NXP i.MX7D," developer.android.com, Sept. 25, 2018. [Online]. Available: https://developer.android.com/things/hardware/imx7d. [Accessed Nov. 18, 2018].
- "Google Assistant SDK for Devices," developers.google.com, Aug. 8, 2018. [Online]. Available: https://developers.google.com/assistant/sdk/overview. [Accessed Nov. 11, 2018].
- "Internet Protocol Version 6: IPv6 for Consumers," fcc.gov, Sept. 8, 2017. [Online]. Available: https://www.fcc.gov/consumers/guides/internet-protocol-version-6-ipv6-consumers.
 [Accessed Dec. 6, 2018].
- G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa and B. Walke, "The IEEE 802.11 universe," in IEEE Communications Magazine, vol. 48, no. 1, pp. 62-70, January 2010.

Acknowledgements

The support of Google through the donation of Android Things is gratefully acknowledged.

Thank You!

The code for the Smart Sign is open-source and can be found at https://github.com/RowanPWLab/smart-signs