
Development of Voice Commands in Digital
Signage for Improved Indoor Navigation Using

Google Assistant SDK

David Sheppard, Nick Felker, and John Schmalzel, Ph.D.
Dept. of Electrical and Computer Engineering

Rowan University

Glassboro, NJ, USA

sheppardd1@students.rowan.edu, felker@google.com, schmalzel@rowan.edu

Abstract—One of the most challenging aspects of trying to
navigate in a new indoor place can be making sense of the
navigational tools available. Traditionally, static maps have been
used to provide guidance to people in indoor spaces. Recently,
a new category of signage has begun to gain prominence in this
area: digital signage. With the advent of such devices, many
approaches have been taken to provide information to people in a
more useful way. Some digital signs simply provide information in
a predetermined manner, while others allow for user interaction
using buttons or touchscreens. Although many digital signs allow
for a more dynamic display of information, few are able to easily
provide custom information based on easily acquired user input.
We propose a novel type of digital signage that is voice-forward,
using voice input and natural language processing to allow the
users to find information faster than a standard touchscreen-only
modality.

Index Terms—Android, Google Assistant, indoor navigation,
IoT, voice ui, conversational design

I. INTRODUCTION AND OBJECTIVES

While indoor navigation has posed a challenge for most

people in an unfamiliar environment, recent technology has

shown a promise in improving indoor way-finding. Tradition-

ally, static signs have been placed throughout public places

to help those who are new to the environment understand

their whereabouts. While those signs can be useful, they do

not provide an easy method for updating their information or

providing custom information tailored to those using the sign.

An attempt is being made to make use of digital signage to

help provide a larger set of on-demand information.

A. Digital Signage

Digital signage is a relatively recent development in the

world of navigation. Digital signs are television-like devices

that can be used to display advertisements, maps, menus, and

much more. They can be found in malls, fast food restaurants,

and even on gas pumps [1]. Some of them are interactive,

incorporating touch screens or implementing physical buttons

for users to interface with. According to [1] published in 2012,

The Android Things device used for development and testing of the Smart
Sign was provided for free by Google.

“LCD displays have decreased in cost more than tenfold over

the past decade,” making deployment of digital signs much

more economical than in the past. As of 2012, it was also

estimated that the digital signage market generated about $5

billion [1]. With a market this big, many companies have arisen

with attempts to solve common problems with digital signs.

One such digital sign in development is the Smart Sign.

Unlike most current digital signs, the Smart Sign is able to

vocally interact with the user, allowing the sign to address

a user’s specific needs. The Smart Sign is a small device

running the Android operating system that uses the power of

the Google Assistant to handle spoken queries. The device has

a touchscreen and uses a small microphone to accept verbal

input.

In addition to supporting all of the Google Assistant’s built-

in queries, the Smart Sign extends the Google Assistant to

serve as a navigation aide like traditional signage. The user

can ask for directions to a room and the Smart Sign will

provide them with a map of the building with a route plotted on

the map leading from their current location to their requested

destination. Additionally, the device can easily be modified to

accept new commands as the need for them arises. This allows

the device to be continually improved upon even after being

deployed in a building.

B. Related Work

While many have attempted to improve indoor navigation

by way of technology, most have assumed that the answer lies

in mobile phones. Typically, this method involves estimating

the user’s current location within the building and providing

directions based on their current location. While mobile phone

location methods like GPS can be very precise outdoors, they

often fall short of providing accurate information in buildings

[2], leaving developers to attempt other positioning methods.

Some have attempted to use the accelerometer and com-

pass found in many mobile phones to provide navigation

assistance to users. Approaches like these often make use of

dead reckoning, a method that involves frequently estimating

location based on inputs like step detection [3]. While this may

This full text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.

978-1-5386-7713-1/19/$31.00 ©2019 IEEE

help to overcome some of the deficiencies in current indoor

positioning methods, it still requires the user to have a phone

that is capable of accurately determining their location and

orientation. Likewise, methods like this can quickly accumu-

late errors. These errors must then be compensated for using

yet another method [2], [3].

Attempts have been made to counteract or eliminate these

errors using other surrounding signals. In [4], RSS values

published at individual shops within a mall were used to

provide accurate location data. Others have attempted to use

geomagnetic signals to determine a user’s location [5]. Still

others have attempted to employ the user’s turns to provide

correction to dead reckoning algorithms as the person is in

motion [2].

Recently, the Android operating system has implemented

a solution that involves the use of Wi-Fi networks to help a

phone determine its location. Implemented in Android 9.0, this

method uses the Wi-Fi Round-Trip-Time (RTT) application

program interface (API) to estimate a compatible phone’s

“distance to nearby RTT-capable Wi-Fi access points” [6].

This provides a software-based solution for the user, but it

still requires them to be within range of compatible hardware.

Regardless of error mitigation methods, it can be challenging

to give directions within a building in a way that is both

accurate and user-friendly.

C. Voice Interaction

The ability to quickly perform voice transcription and

natural language processing has enabled the creation of voice

assistants like Google Assistant [7], Alexa [8], and others.

Some of these voice assistants provide software development

kits (SDKs) for hardware manufacturers and hobbyists to

embed this technology in their own Internet of Things (IoT)

devices.

By introducing voice transcription, the user of a device

is able to find what they’re looking for with a single voice

command instead of having to either scan a static screen or

navigate an unfamiliar user interface.

We propose a novel type of digital signage that is voice-

forward, using voice input and natural language processing

to allow the users to find information faster than a standard

touchscreen-only modality.

II. DESIGN METHODOLOGY

Unlike many other indoor navigation methods which rely

on a user’s mobile phone to guide them, the Smart Sign is

a device that exists in a fixed location. Since the device is

stationary, its location can be known with a high degree of

precision. This eliminates the problematic need to accurately

track the user as they navigate. As a result, the user no longer

needs to rely on their phone and its sensors in order to properly

navigate a building. Instead, a single device is able to provide

succinct directions to the user in the likeness of a traditional

map.

A. Android Things

The device used for development is the Android Things

Pico Pro Maker kit [9]. This device features a Pico i.MX7D

development board along with a 5-inch touch display, a Wi-

Fi antenna, and a USB-C power cable. The board features an

“implementation of two ARM® Cortex®-A7 cores” operating

at up to 1.2 GHz along with an “ARM® Cortex®-M4 core”

[9]. The board features pins that use voltages ranging from 1.8

V to 5 V [9]. The device also requires use of a power source

that can output at least 1 A in order to function.
The Android Things platform is designed as an IoT device

that is simple to develop for. The use of the Android operating

system along with the ability to add additional input and output

devices allows for more efficient development of IoT devices

and prototypes [10]. Apps can be easily updated on the device

and new features can be taken advantage of when released in

regular Android software updates.
As one of the most popular operating systems in the world

[11], Android development skill is not uncommon and many

people are familiar with the operating system. During testing,

the device was running Android 8.1, one of Android’s most

current operating systems. The familiarity of the Android

environment to both programmers and users helps to make

development and use of the Smart Sign much less daunting.

Using the popular Android framework allows for programmers

to build upon existing libraries already in place [10], thus

streamlining the development process.
The Smart Sign employs the Android Things platform to

produce a device that is not unlike a mobile phone running

the Android operating system. For portability, a case that is

able to contain the components in a compact form was 3D

printed using design files that were found online [12]. A small

USB microphone was connected to the device’s USB port and

external speakers were connected to the device’s standard 3.5

mm audio port. Fig. 1 shows the device in its case with the

USB microphone attached.

Fig. 1. The Smart Sign in the idle state

B. Google Assistant SDK

Another advantage to using the Android platform is the

availability of many of Google’s API libraries and develop-

ment platforms for use in the application. This includes the

Google Assistant, Google’s virtual assistant that can respond

to users’ text and verbal queries using natural language pro-

cessing. The Google Assistant SDK for devices [7] provides

an API that allows software to programmatically make calls

to the Google Assistant on behalf of a user.

This is accomplished with a gRPC service [13]. gRPC is

a framework for streaming data between a client and server.

The message format is based around protocol buffers [14],

a data serialization format. A separate compiler application,

protoc, [15] can be used to generate language-specific imple-

mentations which can be used in this application. The protocol

buffer files that define the Google Assistant SDK service are

publicly available. In this Android project, a build command is

employed to generate the interface code for sending protocol

buffers through gRPC.

The Google Assistant has many built-in queries and actions

and provides ways for additional actions to be added by

developers for their own use [7]. The Smart Sign uses custom-

defined actions in an action package [16] that can aid a user in

indoor navigation. Some of the custom commands that were

defined include phrases like “Where is room ?” which

allows the user to ask for a specific room number within

the building. Using the Google Assistant allows for Google’s

commands to be built upon, rather than starting from scratch.

Custom commands are defined using an action package [17].

An action package is a JavaScript Object Notation (JSON)

file that stores custom commands which can be referenced by

the main code when the Google Assistant is called. Action

packages allow the developer to specify desired variables

within the spoken phrases that may change with each request.

For example, the phrase “Where is room ?” may be used

frequently with different room names. By using a variable for

room numbers, the code can act on user’s specific request and

produce an output that is specific the value of the variable.

Additionally, the phrases can be written in such a way that

synonyms (e.g. room and classroom) are added as optional

words in a phrase. With this method implemented, requests

like “Where is room ?” can be considered the same as

“Where is classroom ?” in the code.

The essential contents of the action package can be seen

in Appendix A. The package contains potential queries and

defines variables within the queries that may produce different

responses based on their values. (For the sake of brevity,

only a few of the potential phrases for finding rooms have

been included.) While the phrase definitions are given in the

actions.json file, the logic that determines the application’s

response to the queries is located in the application’s primary

source code (not shown).

C. User Interface

The program itself is an Android application. It is currently

compatible with Android 8.1 and above. The graphical user

interface (GUI) of the application is designed to be simple

and intuitive to the user. The application starts out in an idle

state which can be used to display information such as the

weather, advertisements, and alerts when the device is not

actively taking requests. While in the idle state, the user can

initiate a request by tapping an icon on the screen to open the

assistant activity.
The voice user interface (VUI) is present in the assistant ac-

tivity. When this activity launches, the device begins recording

audio input through the attached microphone. When it appears

that the user has finished speaking, the device stops recording

and provides a response to the user’s query. If the user asks for

directions within the building, the GUI responds by displaying

a map of the building with a polyline leading from the user’s

current location to their desired destination. An example of

this can be seen in Fig. 2. If the user asks a question unrelated

to navigation, the Google Assistant will respond verbally by

way of the speakers. After a 40 second period of inactivity,

the application returns to the idle state.

Fig. 2. Custom directions given in response to a user’s query

III. TESTING AND EVALUATION

In order to test the Smart Sign, the device was deployed

on the third floor of a building on the campus of Rowan

University. Students were encouraged to test the sign and

complete a survey on their experience. The sign was available

for alpha testing for about one week. During that time, over

200 queries were processed. The categories of requests can be

seen in Fig. 3.

Fig. 3. Requests made to Smart Sign during alpha testing

For the purpose of testing, the Smart Sign was displayed on

a music stand with computer speakers placed on the stand on

either side of the sign. The use of a music stand allowed for

people of various heights to adjust the stand to better suit them

if they desired. On the music stand was a paper explaining

the purpose and intended use of the sign. During the testing

period, the device was available for testing 24 hours a day.

After the testing period was over, the survey results were

analyzed and the user’s queries were viewed. The queries

were viewed using the “My Activity” webpage [18] of the

Google account that the Smart Sign was signed into during

the testing period. This allowed for every query interpreted

by the Google Assistant to be viewed along with the Google

Assistant’s response to each request.

IV. RESULTS AND DISCUSSION

After the alpha testing phase was complete, the survey and

query results were analyzed and potential improvements were

theorized. One such problem that users encountered was the

fact that the microphone that was used during testing required

the user to be relatively close to it; they typically had to be

within one foot of the microphone for the Google assistant

to understand them. With further analysis, it the microphone’s

range showed to be the bottleneck of the VUI. When tested

with a laptop computer, it became clear that the microphone

could not pick up sound that came from much further than one

or two feet away. Therefore, it was concluded that better signal

processing would not significantly improve voice recognition.

Instead, a new microphone with a higher sensitivity must be

used to improve user experience.

Another problem that was encountered was the software’s

misinterpretation of the users’ queries. Sometimes, the soft-

ware had trouble recognizing the word “room,” substituting it

for words like “route”. Additionally, the need to add rooms

with non-numerical names (e.g. “office” and “atrium”) was

further underscored by the users’ queries. Finally, it was

discovered that some additional custom commands needed to

be added to accommodate for unexpected phraseology that

was sometimes used by testers when asking for directions to

a room.

Despite the Smart Sign’s downfalls, many users were

pleased with the results. The ability to receive quick and suc-

cinct directions to a room was appealing, while the integration

of the Google Assistant allowed them to ask questions that

they are accustomed to using with other digital assistants. With

further development, many of the current problems will likely

be overcome.

V. CONCLUSIONS

Overall, the benefits of a Smart Sign became apparent

during development and testing of the device. The need for

quick and succinct directions is often realized by many people

when trying to navigate an unfamiliar place. The testing and

feedback demonstrated that the Smart Sign shows promise

in aiding indoor navigation of the future. While there are

many more commands and features that must be added to

the application, the Smart Sign is still under development to

ensure that it can be easily scaled for use in larger applications.

The code software is open source, and can be found at

https://github.com/rowanpwlab/smart-signs.

VI. FURTHER WORK

Three primary goals have been set for the future of the

Smart Sign: to expand the database of custom commands,

to implement server-side integration of the code, and to add

features to the idle state of the application. Expanding the

database of custom commands will make the Smart Sign more

user-friendly by allowing the Assistant to be more effective at

responding to needs of the users. Server-side integration of

necessary code will allow for the application to be updated in

a much easier manner. By storing items like indoor maps on a

server, developers will be able to easily update directions and

maps as needed without having to completely reinstall the app

on the device.

Lastly, the idle state should be revamped to include relevant

information such as announcements, current events in the

building, advertisements, and even suggestions on how to use

the Smart Sign. While the device’s current idle state contains

information about the weather, implementing a series of items

to display could make the device more helpful to users. In

addition to these improvements, further testing of the Smart

Sign with a new microphone will help to ensure relevancy and

promote further improvements.

REFERENCES

[1] R. Want and B. N. Schilit, ”Interactive Digital Signage,” in Computer,
vol. 45, no. 5, pp. 21-24, May 2012.

[2] A. Masiero, A. Guarnieri, F. Pirotti, and A. Vettore, A Particle Filter for
Smartphone-Based Indoor Pedestrian Navigation, Micromachines, vol.
5, no. 4, pp. 1012–1033, Nov. 2014.

[3] J. A. B. Link, P. Smith, N. Viol and K. Wehrle, ”FootPath: Accurate
map-based indoor navigation using smartphones,” in 2011 International
Conference on Indoor Positioning and Indoor Navigation, Sept. 2011,
pp. 1–8.

[4] K. Dong, W. Wu, H. Ye, M. Yang, Z. Ling, and W. Yu, Canoe: An
Autonomous Infrastructure-Free Indoor Navigation System, Sensors,
vol. 17, no. 5, p. 996, Apr. 2017.

[5] D. Liu, S. Guo, Y. Yang, Y. Shi and M. Chen, ”Geomagnetism Based
Indoor Navigation by Offloading Strategy in NB-IoT,” in IEEE Internet

of Things Journal.
[6] “Wi-Fi location: ranging with RTT,” devel-

oper.android.com, Oct. 4, 2018. [Online]. Available:
https://developer.android.com/guide/topics/connectivity/wifi-rtt.
[Accessed Nov. 19, 2018].

[7] “Google Assistant SDK for Devices,” develop-

ers.google.com, Aug. 8, 2018. [Online]. Available:
https://developers.google.com/assistant/sdk/overview. [Accessed Nov.
11, 2018].

[8] “Alexa Voice Service Device SDK,” developer.amazon.com, Nov. 21,
2018. [Online]. Available: https://developer.amazon.com/alexa-voice-
service/sdk. [Accessed Nov. 21, 2018].

[9] “NXP i.MX7D,” developer.android.com, Sept. 25, 2018. [Online]. Avail-
able: https://developer.android.com/things/hardware/imx7d. [Accessed
Nov. 18, 2018].

[10] “Android Things,” [Online]. Available:
https://developer.android.com/things/. [Accessed Nov. 19, 2018].

[11] “Operating System Market Share Worldwide: October 2017 -
October 2018,” statcounter.com, Oct. 2018. [Online]. Available:
http://gs.statcounter.com/os-market-share. [Accessed Nov. 15, 2018].

[12] OttoES, “NXP PICO MX7D with touch screen and camera
case,” thingiverse.com, Oct. 11, 2017. [Online]. Available:
https://www.thingiverse.com/thing:2580821. [Accessed Sept. 6, 2018].

[13] “What is gRPC,” grpc.io, [Online]. Available:
https://grpc.io/docs/guides/. [Accessed Nov. 21, 2018].

[14] “Protocol Buffers — Developer Guide,” developers.google.com,
[Online]. Available: https://developers.google.com/protocol-
buffers/docs/overview. [Accessed Nov. 21, 2018].

[15] “Protocol Buffer Basics: Java,” developers.google.com, [Online]. Avail-
able: https://developers.google.com/protocol-buffers/docs/javatutorial.
[Accessed Nov. 21, 2018].

[16] “Device Actions Overview,” developers.google.com, Oct. 2, 2018.
[Online]. Available: https://developers.google.com/assistant/sdk/device-
actions-overview. [Accessed Nov. 14, 2018].

[17] “Register Custom Device Actions,” develop-

ers.google.com, Oct. 9, 2018. [Online]. Available:
https://developers.google.com/assistant/sdk/guides/library/python/extend/custom-
actions. [Accessed Nov. 20, 2018].

[18] M. Williams, “How to check your Google Assistant history,”
techhive.com, para. 3-4, Apr. 24, 2018. [Online]. Available:
https://www.techhive.com/article/3268921/digital-assistants/how-to-
check-delete-google-assistant-history.html. [Accessed Nov. 18, 2018].

APPENDIX

A. Action Package

Below is the actions.json file that was used in the project
to process user queries and extract key entities.

{
” m a n i f e s t ” : {

” disp layName ” : ”Room Number ” ,

” invoca t ionName ” : ”Room Number ” ,

” c a t e g o r y ” : ”PRODUCTIVITY”

} ,

” a c t i o n s ” : [

{
”name ” : ”com . acme . a c t i o n s . Room Number ” ,

” a v a i l a b i l i t y ” : {
” d e v i c e C l a s s e s ” : [

{
” a s s i s t a n t S d k D e v i c e ” : {}

}]} ,

” i n t e n t ” : {
”name ” : ”com . acme . i n t e n t s . Room Number ” ,

” p a r a m e t e r s ” : [

{
”name ” : ” number ” ,

” t y p e ” : ” SchemaOrg Number ”

}
] ,

” t r i g g e r ” : {
” q u e r y P a t t e r n s ” : [

” Where i s (c l a s s r o o m) ? (room) ? $SchemaOrg Number : number (a t) ? ” ,

” Where can I f i n d (c l a s s r o o m) ? (room) ? $SchemaOrg Number : number (a t) ? ” ,

”How would (you) ? (I) ? g e t t o (c l a s s r o o m) ? (room) ? $SchemaOrg Number : number ”

]}} ,

” f u l f i l l m e n t ” : {
” s t a t i c F u l f i l l m e n t ” : {

” t e m p l a t e d R e s p o n s e ” : {
” i t e m s ” : [

{
” d e v i c e E x e c u t i o n ” : {

”command ” : ”com . acme . commands . Room Number ” ,

” params ” : {
” number ” : ” $number ”

}}}]}}}},

{
”name ” : ”com . acme . a c t i o n s . Room Name ” ,

” a v a i l a b i l i t y ” : {
” d e v i c e C l a s s e s ” : [

{
” a s s i s t a n t S d k D e v i c e ” : {}

}]} ,

” i n t e n t ” : {
”name ” : ”com . acme . i n t e n t s . Room Name ” ,

” p a r a m e t e r s ” : [

{
”name ” : ”name ” ,

” t y p e ” : ”RoomName”

}
] ,

” t r i g g e r ” : {
” q u e r y P a t t e r n s ” : [

” Where i s (room) ? $RoomName : name ” ,

”How do I g e t t o (room) ? $RoomName : name”

]}} ,

” f u l f i l l m e n t ” : {
” s t a t i c F u l f i l l m e n t ” : {

” t e m p l a t e d R e s p o n s e ” : {
” i t e m s ” : [

{
” d e v i c e E x e c u t i o n ” : {

”command ” : ”com . acme . commands . Room Name ” ,

” params ” : {
”name ” : ” $name ”

}}}]}}}}],

