VLSI Final Project: Full Adder

David Sheppard
VLSI Design, Section 3
December 20, 2019

I. INTRODUCTION AND OBJECTIVES
A. Goals

When constructing any logic circuit at the silicon level, one
must be sure to factor in circuit speed amongst other design
constraints. The end goal of this project was to design, test, and
analyze a full adder circuit. The design was to be implemented
with speed as the foremost priority. Furthermore, the circuit
must present an input capacitance equivalent to that of 3 unit-
transistors (henceforth referred to as 3C of capacitance) and
drive a load with 30 times as much capacitance (90C). The
linear delay model with logical effort analysis was to be used
to determine optimal gate sizing and expected delay.

The full adder circuit was to be implemented as both a
schematic and layout. The layout was constructed for the AMI
C5N process with a feature size of 600 nm [1]. The schematic-
based and extracted (layout-based) designs were simulated and
the results compared to each other and to the calculated values.
Discrepancies between the results were discussed and their
potential causes were summarized.

II. APPROACH

The design process began by determining possible logical
expressions to use for representing the full adder’s function-
ality. A truth table was constructed to determine the circuit’s
basic logical equations in the sum of products format. These
equations were used in conjunction with K-Maps to determine
appropriate ways to simplify the overall output expressions.
Once this was complete, the principle of bubble pushing was
used to further simplify the logical design into one that would
be more CMOS-friendly in terms of both construction and
speed. During this reduction process, two final designs were
decided upon with which to further analyze by means of the
linear delay model.

Using the values of logical effort and parasitic delay given
in [2], the normalized delay for each of the designs was
determined using effort-based calculations. After deciding
which of the proposed designs was optimal, the proper number
of stages and gate sizes for each circuit was decided upon
mathematically. Once this was completed, the circuit was
ready for construction.

The full adder circuit and its individual circuit components
were constructed using both the Cadence Virtuoso Schematic
Editor and the Cadence Virtuoso Layout Editor. Both designs
were tested and their equivalence was verified through the
layout vs. schematic (LVS) validation tool. After simulating
the entire full adder, the results were compared to the pre-
vious calculations after denormalization with the simulation

results of the unit inverter. The results from the calculations,
schematic simulation, and extracted (layout-based) simulation
were all compared and the discrepancies discussed.

III. DESIGN METHODOLOGY
A. Logical Optimization

To begin the analysis of the circuit, the logic of the circuit
was quantified and summarized. The full adder contains three
inputs: two standard input bits and a carry-in bit. For simplic-
ity, these inputs will be referred to as A, B, and C, respectively.
The full adder uses these three bits of input to generate two
outputs: Sum and Carry. The Sum bit represents the single-bit
addition of the three bits while the Carry output represents
whether or not a digit must be carried into the output. The
full adder’s truth table can be found in Table I.

TABLE I
TRUTH TABLE FOR FULL ADDER
Inputs Outputs
A|B|C Sum | Carry
0[]0 0 0 0
0] 0|1 1 0
0|10 1 0
0| 1 1 0 1
1100 1 0
1101 0 1
1 110 0 1
1 111 1 1

As Table I shows, the Sum goes high whenever there are
an odd number of high inputs. On the other hand, the Carry
output goes high whenever there are at least two high inputs.
These observations can be used to construct a logical equation
to represent each output. To simplify this process, the K-
Maps shown in Fig. 1 were used to create simplified logic
expressions as a starting point.

Based on the results from the K-Maps given in Fig. 1, the
following logical expressions can be found:

Sum = ABC || ABC || ABC || ABC (D)
Carry = AB || AC || BC (2)

(see Appendix A for a catalog of logical expression symbols).
For (1), the K-Map was unable to simplify the logical expres-
sion at all. Nonetheless, it was previously observed that the
sum output should be high if and only if an odd number of
inputs are high. This can be expressed using the Exclusive OR
function, such that

Sum=AdBaoC=(AeB)dC 3)

A A
0 1 0 1
00| 0 1 00| 0 0
01| 1 0 01| 0 1
B/C B/C
11| 0 1 11| 1 1
10| 1 0 10 0 1
Sum K-Map Carry K-Map

Fig. 1. K-Maps for Sum and Carry Outputs

This allows the value of the Sum to be completed using two
XOR gates. Therefore (2) and (3) can be combined to form
the logical diagram seen in Fig. 2

2 D
))

Fig. 2. Basic Full Adder Circuit with Independent Sum and Carry Outputs

Furthermore, it can be noted that an alternative logical
expression for Carry can be constructed by reusing the expres-
sion A @ B from the Sum logic. Since Carry should be high
if and only if there are at least two high inputs, the expression
can be rewritten as saying that Carry should go high if A
and B are high or if one of them is high along with C. The
expression for Carry can therefore be given by

Carry = AB || [(A® B)C] 4

This design has the benefit of using one less logic gate than
the design in Fig. 2 because the first XOR gate is used to
compute both Sum and Carry. Combining (3) and (4) results
in the gate-level diagram given in Fig. 3.

DA
,

: o

Fig. 3. Basic Full Adder Circuit

Following the determination of the designs in Fig. 2 and
Fig. 3, the property of bubble pushing was used to simplify the

gate-level designs even further. As Weste and Harris explain
in [2], bubble pushing allows for complicated logic gates such
as AND and OR gates to be represented more simply as
NOR and NAND gates. The basic premise of bubble pushing
is rooted in DeMorgan’s Rule, which allows for conversion
between conjunctive (AND) statements and disjunctive (OR)
statements by altering the distribution of negations in an
expression [3]. Using these properties, the OR gate in Fig. 3,
can be represented as a NAND gate with bubbles (signifying
inversion) at each of its inputs [2]. Making this conversion
then allows for the new bubbles at the new NAND gate’s
inputs to be pushed backward to the preceding AND gates,
thus converting them into NAND gates as well. The resulting
gate-level logic design can be seen in Fig. 4. This design is
much simpler to implement in CMOS because it requires fewer
transistors. Additionally, it is likely faster than the design in
Fig. 3 because NAND gates have notably lower logical effort
than OR and AND gates [2].

2 1] >

)) Sum

Fig. 4. Design 1: Full Adder Improved with Minimal Logic Gates

As with the design shown in Fig. 3, the design given in
Fig. 2 can also be minimized by bubble pushing. In a virtually
identical manner, the OR gate can be converted into a NAND
gate with bubbles at its inputs. These bubbles can then be
pushed to the preceding AND gates to convert them into
NAND gates as well. The resulting design is shown in Fig.
5. For the sake of simplicity, the design shown in Fig. 4 will
be referred to as Design 1 and the design in Fig. 5 will be
referred to as Design 2.

Fig. 5. Design 2: Full Adder with Independent Sum and Carry Outputs

B. Effort Delay Optimization

To determine which full adder design would result in the
shortest delay from input to output, the logical efforts of

the previously discussed designs were calculated. Weste and
Harris define logical effort of a gate as “the ratio of the input
capacitance of the gate to the input capacitance of an inverter
that can deliver the same output current” [2]. The basis of this
linear delay model is the idea that a unit inverter can be taken
as the basis for normalization so that all other logic gates can
be modeled with respect to the inverter’s delay. The delay of
the unit inverter can then be found in simulations so that the
estimated delay of the entire circuit can be calculated based on
this information [2]. The base equation used to approximate
the overall circuit’s delay is given as

D=F+P=GBH+P=NF~¥ +P=Nf+P (5

where F' is the effort delay of the circuit, P is the parasitic
delay of the circuit, G is the path logical effort, B is the path
branching effort, H is the electrical effort of the circuit, N is
the number of stages in the path, and f = F~ is the optimum
effort per stage [2]. These properties refer to those of the entire
path that is being analyzed. To determine these values, their
equivalent values for each stage (signified as f, p, g, b, and
h) must be determined. The values of stage logical effort and
stage parasitic delay for the gates relevant to this analysis are
presented in Table II. The values given here are normalized to
the logical effort and parasitic delay of the inverter.

TABLE 1T
NORMALIZED LOGICAL EFFORT AND PARASITIC DELAYS OF RELEVANT
LoGic GATES

Gate Logical Effort (g) | Parasitic Delay (p)
Inverter 1 1
NAND2 2 2
NAND3 2 3

XOR2 4 4

While the values of g and p are given in Table II, the
values of b and h must be determined based on the circuit’s
construction itself. The value of b refers to the branching effort
of a stage. This depends on the number of logic gates that
a given gate outputs to. For example, the first XOR gate in
Fig. 4 would have a stage branching effort of 2 because its
output is connected to two gates: the second XOR gate and
a NAND gate. Similarly, the value of h represents the stage
electrical effort which quantifies the output capacitance of a
gate divided by its input capacitance. The relations between
path and stage values for a path with IV stages are summarized
in the following equations:

N
Logical Effort = G = H gi (6)
i=1
N
Branching Effort = B = H b; @)
i=1
Electrical Effort = H = M (8)
Cpath in
N
Parasitic Delay = P = Z i 9)

i=1

N N
Effort Delay = F = > fi =Y gibih; = GBH
=1 =1

(10)

Using these properties in conjunction with (5), the theoret-
ical delay of each logic device can be calculated. As Fig. 4
and Fig. 1 show, the logical effort taken starting at input A
or input B will be greater or equal to the logical effort taken
starting at input C for each case. For this reason, the analyses
will be preformed by calculating logical effort from input A
to each output (i.e. the worst case logical path).

As previously mentioned, the design constraints dictate that
the circuit must present a capacitance of 3C at each input
where C is the capacitance of a unit transistor. As a result,
each input of the full adder will be immediately followed by
an input buffer to ensure that this design constraint is made.
The first inverter of each input buffer will be the unit inverter
with a pMOS width of 3 um and an nMOS width of 1.5 pm.

Additionally, the design constraints also specify that each
of the full adder’s outputs will be driving 90C of capacitance.
This gives the overall circuit an electrical effort of 30, in
accordance with (8). As Jaeger and Blalock point out in [4],
circuits with a high electrical effort can often benefit from
added output buffers so that the path electrical effort is better
distributed among each stage. As a general rule of thumb, the
optimal number of stages N in a circuit can be approximated
as

N =~ log,(F) (11)
Using an Excel spreadsheet, the normalized delays for Design
1 and Design 2 with 0-2 output buffers were computed. The
results of these computations can be seen in Table III, with
the optimal delays shown in bold.

TABLE III
COMPARISON OF OPTIMAL NORMALIZED DELAYS FOR DESIGN 1 AND
DESIGN 2 WITH VARYING NUMBERS OF OUTPUT BUFFERS

A to Sum | A to Carry
No Buffer 36.48 29.28
Design 1 1 Buffer 33.15 30.36
2 Buffers 34.58 33.05
No Buffer 34.64 22.04
Design 2 1 Buffer 32.16 23.5
2 Buffers 33.86 26.51

As Table III shows, the fastest design should be Design
2 with one output buffer at Sum and no output buffer at
Carry. Comparing this with the rule in (11) shows that
the results were sound. The effort delay of A to Sum is
F = GBH = (4 x 4)(3)(30) = 1440 and A to Carry is
F = GBH(3 x 2)(3)(30) = 200. Using (11) to calculate
according to the fan-out of 4 rule produces log,(1440) ~ 5.25
and log,(200) = 3.82. Since the number of stages in any path
must be an integer, the value of IV for the path from A to Sum
must be 5 or 6 and the value of N for the path from A to
Carry must be 3 or 4. As Table III shows, this was indeed the
case. The path from A to Sum requires 6 stages and the path
from A to Carry demonstrates a need for 4 stages. The final

*’ D p |3 |4 @

C

Invl Inv2

N1

Carry

Fig. 6. Final Full Adder Design

circuit design can be seen in Fig. 6 with gate size variables
listed at each logic gate.

From these results, the optimal gate sizes can be calculated.
This was done by giving each gate an effort delay equal to
the optimal effort delay per stage, f . For the path from A
to Sum, the optimal stage effort delay would be f =F~ =
1440% = 3.36. Similarly, the path from A to Carry would have
an optimal stage effort delay of f = F~ = 2001 ~ 3.76.
Using the equation f = gh for each stage, the optimal size of
each gate was determined for each path.

During the gate sizing process, it must be remembered that
this analysis assumes that each gate in a single stage has the
same size. As a result, there would be conflicting sizes found
for the first XOR2 gate and the NAND2 gates. For the sake
of simplicity, the XOR2 gates was constructed with the size
determined using the analysis for the path from A to Sum
while the sizes for the NAND2 gates were determined using
the analysis for the path from A to Carry. Additionally, each
gate size had to be rounded to the nearest 0.15 pum due to
design constraints. A summary of the final gate sizes is given
is Table IV.

TABLE IV
FINALIZED LOGIC GATE SIZES

Logic . Normalized P:N pMOS nMOS
Gate Quantity Gate Size Ratio | Size (um) | Size (um)
Invl 3 1 2:1 3.00 1.50
Inv2 3 3.36 2:1 10.05 5.10
Inv3 1 2.66 2:1 7.95 4.05
Inv4 1 8.93 2:1 26.85 13.35

N1 3 4.71 1:1 10.65 10.65

N2 1 13.3 2:3 24.00 35.85

X1 1 3.76 1:1 11.25 5.70

X2 1 3.16 1:1 9.45 4.80

Despite the limitations of gate sizing, each stage effort
remains well within a reasonable range. As [2] explains, a
stage effort in the range of 2.4 to 6 will result in a design
“within 15% of minimum delay.” Using the real gate sizes
given in Table IV, a spreadsheet was used to determine that
the real stage efforts ranged from 3.36 to 3.92 - well within
the range needed to be +15% of the optimal delay.

C. Standard Cell Library

Once these values were obtained, each logic gate was
constructed as both a schematic and layout. After each layout

was constructed, it was extracted and compared with the
schematic via the LVS verification tool. The LVS tool ensured
that the netlists of both the extracted layout and schematic
matched, i.e. it affirmed that the electrical connections of the
layout were the same as those in the schematic. The layouts of
the unit inverter, the NAND2 gate, the NAND3 gate, and the
first XOR2 gate are shown in Fig. 7. The inverters not shown
vary only in width from the unit inverter, as does the other
XOR2 gate from the one shown. It is important to note that
the NAND3 gate was folded for the sake of compactness; this
was done to allow the overall full adder to be more densely
constructed.

(d) NAND3

(c) NAND2

Fig. 7. Standard Cell Library Layouts

D. Denormalization of Calculated Delays

One the unit inverter was built, its logical effort and parasitic
delay could be determined by testing the device with a varying
number of loads. The parasitic delay of the inverter is simply
the intrinsic delay of the inverter itself [2]. To determine the
parasitic delay, the inverter was simulated with no load; the
resulting delay was its parasitic delay. From the simulations,

this was found to be ¢,q ~ 63.5 ps. This was determined by
finding the average rising and falling propagation delay. The
rising propagation delay t,4, is defined as the time between
the input signal rising to %VD p and the output signal hitting
%VD p during its transition. The falling propagation t,q¢ is
identical to rising propagation delay except that it is found
when the input is falling instead of rising [2]. The results
are summarized as follows: ¢,q, ~ 74 ps, tpqr ~ 53 ps, and
tpq = 63.5 ps.

The inverter was also tested with 1-3 loads at its output.
In each case, another copy of the inverter was used as the
load. For these testing purposes, the extracted version of
the inverter was used. The results of the simulations were
recorded, normalized to the unloaded value of ¢,4, and plotted
to determine the inverter’s logical effort. The logical effort
corresponds to the slope of the plotted data [2]. Ultimately,
it was found that the logical effort of the inverter is about
g ~ 0.46. The results are given in Fig. 8, where the slope of
the data-fitted line is the inverter’s logical effort.

25

5 /
y=0.4615x +0.9927
R?=0.9998
15

0.5

T T T T T T !
0 0.5 1 15 2 25 3 3.5
Normalized Delay

— Linear (Normalized Delay)

Fig. 8. Normalized Delay of Unit Inverter with Respect to Loading

From this new data, the theoretical delay was then denor-
malized and calculated in terms of nanoseconds. To do this,
the logical effort values given in Table II were multiplied by
0.46 and the parasitic delays given in Table IT were multiplied
by 63.5 ns. These results are given in Table V.

TABLE V
CALCULATED PROPAGATION DELAYS IN NANOSECONDS

A to Sum (ns) | A to Carry (ns)
todr 1.596 1.024
tpdf 1.143 0.733
tpd 1.369 0.878

E. Complete Schematic and Layout Designs

After the previous analyses were finished, the complete full
adder circuit was constructed. The schematic view was made
by wiring together the symbols created for each standard cell
library element. Each of these symbols refer back to their own
respective schematics. The full adder schematic can be seen
in Fig. 9.

Fig. 9. Full Adder Schematic

This design was then created as a layout using 600 nm
technology [1]. The layout view can be seen in Fig. 10 (see
Appendix C for an enlarged image of the layout). As the image
shows, the device is laid out with the inputs on the left and
the outputs on the right. The circuit begins with the input
buffers (from left to right: A, B, and C input buffers). These are
followed by the three NAND2 logic gates which are followed
by the NAND3 gate. At this point, the Carry output is finished
and is wired on a Metal 2 track to the right edge of the design.
Following the NAND3 is the first XOR2 gate which outputs to
the second XOR2 gate. This ends the Sum computation which
then passes through a buffer before going to the Sum output
pin on the right.

Fig. 10. Full Adder Layout

The overall dimensions of the full adder were 129.6 um
by 55.2 pum, or 432X by 184A. This compactness was made
possible in part by the folded designs of the NAND3 gate and
final inverter. Without this folding, the design would have been
much larger. This layout was extracted along with its parasitic
capacitances for use in simulations. The extracted layout (with
the parasitic capacitors hidden for simplicity) can be seen in
Fig. 11.

Following construction of the layout, it was compared to the
full adder schematic by means of the LVS tool to ensure that
their netlists did match. After making some minor corrections,
the netlists did in fact match. (A screen capture of the result
can be seen in Fig. 17 in Appendix B.) Once this verification
was complete, the testing stage began.

Fig. 11. Extracted Full Adder Layout

IV. RESULTS AND ANALYSES
A. Results

The testing phase began by simulating the circuit with all
possible logical input values. This was achieved by setting
inputs A, B, and C as pulses such that their periods were
successively doubled. Input A was set to alternate between 0 V
and 5 V with a period of 10 ns, a 50% duty cycle, and rise and
fall times of 100 ps. Inputs B and C had the same properties,
save that they had periods of 20 ns and 40 ns, respectively.
This allowed for the full adder to have inputs that represented
binary values 000 through 111 that incremented by 1 every 5
ns. The simulation was run with these properties for 45 ns for
both the schematic-based and extracted-based designs.

In order to meet the design specifications, the full adder
was tested with an inverter with 90C of capacitance at its
load. Since the unit inverter was constructed of an nMOS and
pMOS with widths of 1.5 um and 3 pm, the 90C inverter
was given nMOS and pMOS widths of 45 pm and 90 pum,
respectively. This resulted in an inverter with 30 times as much
capacitance as the unit inverter (which has 3C of capacitance).
The schematic used for testing is shown in Fig. 12.

Fig. 12. Schematic Used for Simulations

The simulation waveform from the extracted simulation is
shown in Fig. 13. In the figure, the waveforms represent (from
top to bottom): A, B, C, Sum, and Carry. As the figure shows,
the full adder did indeed compute the logical results correctly.
Additionally, the figure also shows that the Carry output was

computed faster than the Sum because the Carry waveform
responded faster to the inputs and appears to be placed further
to the left than the Sum output waveform. This aligns well with
the expectations set forth in Table V.

Fig. 13. Full Adder Extracted-Based Simulation (Top to Bottom: A, B, C,
Sum, Carry)

To better determine the delay from the simulations, a more
simplistic waveform than the one shown in Fig. 13 was used.
The new waveform had input C grounded while inputs A
and B toggled on and off one at a time. Unlike the more
comprehensive logic simulations, this one helped to isolate
the various responses of the circuit because only one input
toggled at a time. In this simulation, input A had a period of
10 ns with rise and fall times of 100 ps. Input B had a period
of 20 ns with rise and fall times of 100 ps and a delay of 2.5
ns. The simulation was run for 25 ns. The Marker Toolbox
Assistant was used to place a horizontal bar at the 2.5 V level
of each waveform to easily see the time values at which the
waveforms crossed the 2.5 V mark. These waveforms can be
found in Fig. 14.

Fig. 14. Full Adder Extracted-Based Simulation with Delay Details (Top to
Bottom: A, B, Sum, Carry)

This type of analysis was used to determine the propagation
delays for both the extracted and schematic simulations. The
results are summarized in Tables VI, VII, and VIII. In each
of these cases, the delay was taken from input A to the Sum
and Carry outputs. The simulation shown in Fig. 14 was the
source for each of the results.

Table VI shows the relationship between the calculated
delay values and the delays taken from the schematic sim-
ulation. From this data, it can be concluded that the schematic
simulation yielded smaller rising propagation delays than

predicted and larger falling propagation delays than predicted.
This was the case for both the Sum and Carry outputs. On
average, the schematic responses were a bit slower than the
calculated ones. Taking the simulation as the true value, the
calculations yielded percent errors of 6.18% and 0.62% for
the Sum and Carry average delays, respectively.

TABLE VI
CALCULATED DELAY VS. SCHEMATIC DELAY
Value Calculated Schematic Percent
Delay (ns) Delay (ns) Error
tpdr 1.596 1.510 5.67%
Sum tpdf 1.143 1.409 18.88%
Average 1.369 1.460 6.18%
tpdr 1.024 0.907 12.85%
Carry tpdf 0.733 0.861 14.82%
Average 0.878 0.884 0.62%

Unlike the schematic simulations, the extracted simulations
demonstrated a faster average propagation delay than the
calculations. As Table VII shows, the rising propagation delay
of the extracted layout proved to be notably faster than the
calculated values with percent errors of 19.47% and 15.91%
for the Sum and Carry calculated t,4,. values, respectively.
While the falling propagation delays were still slower than
the calculated ones, the overall average speed of the extracted
device was faster than the calculations predicted.

TABLE VII
CALCULATED DELAY VS. EXTRACTED DELAY

Value Calculated Extracted Percent

Delay (ns) Delay (ns) Error

tpdr 1.596 1.336 19.47%

Sum tpdf 1.143 1.218 6.17%
Average 1.369 1.277 7.24%

tpdr 1.024 0.883 15.91%

Carry tpdf 0.733 0.786 6.70%
Average 0.878 0.835 5.26%

The difference between the schematic and extracted simula-
tions varied quite a bit, with percent errors ranging from less
than 3% to just over 15% (if taking the extracted simulation
as the true value). As Table VIII displays, the variations for
the Sum propagation delays were greater than those associated
with the delays to the Carry output. The greatest disparity was
seen between the schematic and extracted falling propagation
delays of the Sum output. The most similar value between the
two simulations was for the rising Carry propagation delay
with a percent error of only 2.71%.

TABLE VIII
SCHEMATIC DELAY VS. EXTRACTED DELAY
Schematic Extracted Percent
Value
Delay (ns) Delay (ns) Error
tpdr 1.510 1.336 13.06%
Sum tpdf 1.409 1.218 15.68%
Average 1.460 1.277 14.31%
tpdr 0.907 0.883 2.71%
Carry tpdf 0.861 0.786 9.53%
Average 0.884 0.835 5.92%

While not the focus of the analysis, the delay from C to
Sum was also determined. Since the path from C to Sum only
involves one XOR2 gate, it was expected that the delay would
be shorter than from A or B to Sum. Using the logical effort
of the path, it was determined that the normalized average
propagation delay is theoretically 1.011 ns. From the extracted
simulation, this was found to be 0.973 ns, making the error
only 3.9%.

Lastly, the rise and fall times of the extracted and schematic
simulations were recorded and compared. The rise time (Tr)
of the circuit represents the time taken for the output waveform
to rise from 20% of its final value to 80% of the final
value. The fall time (1) of the circuit is the inverse of this,
measuring the time spent dropping from 80% to 20% of the
starting value. The data is shown in Table IX. As the table
shows, the differences between the schematic and extracted
rise and fall times were relatively small for the Sum output
and larger for the Carry output. Taking the extracted rise and
fall times as the true values, the percent errors were between
2% and 4% for the Sum output and between 12% and 19% for
the Carry output. With the exception of the Carry rise time,
the extracted circuit had steeper rising and falling slopes than
the schematic-based circuit.

TABLE IX
RISE AND FALL TIMES IN PICOSECONDS

Schematic Extracted Percent Error
Sum Tr (ps) 245.86 240.16 2.37%
Tr (ps) 247.98 239.64 3.48%
Carry Tr (ps) 317.63 393.6 19.30%
Tr (ps) 320.9 284.4 12.83%
B. Analysis

The simulations of both the schematic-based design and
the extracted (layout-based) design demonstrated both the
limitations and accuracy of the effort-based delay calculations.
During the simulation processes, the percent errors between
simulated and calculated delays (from input A to the Sum and
Carry outputs) ranged from 5.67% to 19.47%. By summarizing
these results in Fig. 15, it becomes apparent that the schematic
tended to produce delays higher than calculated while the
extracted layout produced less delay than expected.

These differences can be attributed to a number of factors
that are outlined in [2]. One parameter that is hard to account
for when predicting delay of a circuit is wiring. The methods
by which a circuit is constructed can vary widely among
designers. The use of different metal layers, different wire
lengths, and folded designs results in changes in parasitic
capacitance and resistance that are hard to quantify. Since
the delay of a circuit is highly dependent upon the internal
resistance and capacitance of the design, any changes in these
parameters can help or hinder a circuit’s speed. One source
of discrepancy between the full adder’s schematic delay and
extracted delay could be the folded design used to save space
when constructing the NAND3 and one of the inverters (see
Fig. 7 and Fig. 10).

M Calculated M Schematic Extracted

16
14
12

1.460

1.0

Delay (ns)

0.8
0.6
0.4
0.2

0.0
Sum

Carry

Fig. 15. Summary of Average Propagation Delay Results

Another factor that may come into play is the approxi-
mations assumed in the linear delay model as a whole. As
Sakurai and Newton explain in [5], placing n transistors
with resistance R in series does not necessarily produce an
equivalent resistance of nR. In fact, the resistance can often be
less than nR. This disparity between assumptions and reality
would most affect the NAND3 gate used in the full adder. The
NAND3 device itself was constructed with a P:N ratio of 2:3
with the assumption that placing n transistors of resistance R
in series would in fact produce n R of resistance. This principle
may have led to differences not only between the extracted
design and calculations, but also between the extracted design
and the schematic.

In addition, the linear delay model does not account for all
capacitances within each device. As [2] points out, the model
does not anticipate the gate to drain capacitance (Cyq) that
exists within transistors. This capacitance leads to an increase
in delay primarily because of the bootstrapping behaviors that
it produces. Bootstrapping refers to the tendency of a transistor
to draw additional current to charge Cq even before the output
begins to fall. This results in a small voltage spike above
the supply voltage value because Cyq briefly contributes to
a charging of the output while it is still high [2]. A clear
example of bootstrapping was seen when simulating the first
XOR2 gate. A portion of the output waveform is shown in
Fig. 16. Bootstrapping leads to an increased delay because it
gives the output a higher charge just when it is set to fall. As
a result, the sub-circuit’s output will take longer to discharge
and so produce a longer delay. While bootstrapping is not a
major source of delay, its effects can still be seen by looking
closely at the full adder’s output waveforms in Fig. 13 and
Fig. 14.

Despite these small differences, the simulations were gen-
erally consistent with one another and with the calculations.
The average propagation delay to the Carry output behaved the
most consistently across the board. This is likely due to the
uniformity of the path and the NAND gates’ reduced complex-
ity compared to the XOR gates. The overall analysis showed
that the extracted simulation yielded the fastest response for

Fig. 16. Demonstration of Bootstrapping when Simulating an XOR2 Gate

both the Carry and Sum outputs.

While the Carry output did give the fastest response for
each simulation, it is important to note that it can still be the
bottleneck of the design if the full adder is used in a carry
ripple adder. In a carry ripple adder, the Carry output of each
full adder is fed as the “Carry In” (C) input of a successive full
adder. As a result, each successive adder is dependent upon
the previous one, leading to a multi-bit adder with a delay
dependent upon the C to Carry and C to Sum propagation
delay. As a result, it was important to take each output into
account when optimizing the overall circuit for speed.

V. CONCLUSIONS

Ultimately, the analyses and simulations proved to resemble
one another with minor differences. When comparing the
average propagation delay from input A to each output, the
simulation of the extracted layout performed the best with
propagation delays of about 1.28 ns and 835 ps to the Sum and
Carry outputs, respectively. The linear delay model was able to
give reasonable estimates for each scenario and demonstrated
percent errors that never exceeded 20%. While the linear delay
model is simply an estimation [2], it gave insight that helped
to design the optimal logical paths without performing any
simulations beforehand.

During the design process, the fan-out of 4 rule was
confirmed by calculations to determine the optimal number
of stages for each path within the circuit. This rule - in
conjunction with a logical effort analysis - allowed for the
delay from the inputs to the Sum to be reduced by adding
a buffer to help better drive the high output capacitance. By
sizing the gates properly, the effort delay of each logic gate
was distributed almost evenly among each gate to provide the
shortest delay possible. Despite the numerous downsides of
the linear delay model that were discussed, the calculated and
simulated delays matched well. Overall, the linear delay model
proved to be a very useful starting point for CMOS circuit
design.

REFERENCES

[1] “SCMOS Restrictions,” mosis.com, May 11, 2009. [Online]. Avail-
able: https://www.mosis.com/files/scmos/scmos.pdf. [Accessed Dec. 13,
2019].

[2] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Boston, MA: Addison-Wesley, 2011.

[3] P. Hurley, A Concise Introduction to Logic, 12th ed. Stamford, CT: ~ B. LVS Verification Screen Capture
Cengage Learning, 2008.

[4] R. Jaeger and T. Blalock, Microelectronic Circuit Design, 2nd ed. New
York, NY: McGraw Hill, 2004.

[5] T. Sakurai and A. R. Newton, ”Delay analysis of series-connected
MOSFET circuits,” in IEEE Journal of Solid-State Circuits, vol. 26,

no. 2, pp. 122-131, Feb. 1991. o v cacencel |y
un Directory \ErnwssJ
. . : Create Netlist ~ # schematic ¥ extracted
VI' APPENDIX '@ " " = X Library Full fdder Full_Feder
cadencel.onen.edu :
. . Coll aclder adder
A. Catalog of Logical Expression Symbols (g LY s ot T it e - =
% Run Directory: fomesshepparddiicadencerL s Browse) | Sel by Cursor) | Browse)| Sel by Cursor
[Cose IR o Fie dival¥s.rul Browse
TABLE X Fules Library ¥ 'NCSU_TechLib_ami06
y = . = 2 1 " LvS Options o Rewiring _ Device Fixing
LOGIC EXPRESSIONS _ Create Cross Reference ¥ Terminals
. 2 i = ;] : . GComespandence File . /hone/sheppardd1/cadence/Lvs | Create |
Operation Written Expression SyEbol St M
NOT not X X ; . : . . : B -0 o backgoun
AND Xand Y XY __Run__ Oupul | EmorDisplay | | Monitor | Info
OR X orY X || Y . - " : ‘| . : _Backannatate) | Pavasitic Probe | | Build Analog)| Build Mised

XOR X xor Y XY

Fig. 17. Full Adder LVS Result

C. Enlarged Image of Final Circuit Layout

Fig. 18. Full Adder Layout

D. Enlarged Image of Extracted Layout with Labels and Parasitic Capacitors Hidden

Fig. 19. Extracted Full Adder Layout

